Categories
Software

ChatGPT LLMs , AI for consumers and Future

Talking tomcat (copyright Fandomwiki)

Remember “talking tomcat” ? This was one of the unsung hero’s that made android OS popular .A cartoonish cat that can echo what you spoke in cat voice .This was a fine demonstration that with prevailing hardware android could replay voice with modification . Of course the lay uses would not word it this way but they got the point anyhow .This is exactly how technology goes mainstream . What followed tomcat is set of apps that could then add dog face to your picture then to your video and so on .By then the novelty had faded , the capability was taken for granted .People expected mobiles to this much at least and then moved on .

Users perceive ChatGPT as bright teenager

ChatGPT in its current form is talking tomcat of AI .This is first time common lay person is getting a demo on how much more can be done with AI . For all he knows ,its nice chatbot that can do brainy stuff . How brainy you ask ?

This is important question to ask .If we were to equate the “general” feel that ChatGPT gives to most common interactions people have then what would it feel like ? Remember spelling bee contest that are held in USA ? For most of the lay users chatgpt feels like a smart teenager that is G.K bee (in that sense). This is how consumer mass market sees innovation . Simplified and equated to mundane things in his/her life .

Two directions LLM needs to evolve

LLMs for consumer use cases

The above discourse make it clear that large language models(LLM) need to evolve and also be understood in 2 distinct set of parameters . One is the consumer angle . Taking a leaf from how android was seen or how voice assistants were seen ,LLMs for lay consumer simply means that computers can now answer diverse and more complex answers(#1).This also implies that how much ever the the press focuses on ChatGPT , the future of LLM is in the usage driven consumer space . These are specialized models that do one or few things in one are with unambiguous and immediate utility . Imagine an app that can take your picture or live videos and suggest fashion makeovers to you (ideal copyrighted hereby 🙂 ). Or take for example BoomberGPT that aims to cater to offer targeted consumer utility for end users . Similar such gpt models can be built around legal advisory ,medical first line help ,cultural adjustment needed during travel .A general LLM that can filter money laundering names can makes life easy for regulators .

OpenAI is aiming to be THE general purpose engine for all such use case via its plugin architecture .Can it succeed in giving curated user experience is matter of debate with ChatGPT 4 .With future versions of ChatGPT things might change .But it can also be case of diminishing returns where the model size and compute cost cant justify future refinement . As far as end users of AI are concerned they are interested in the utility than specifics of the software internals .

LLMs for AI community

Information ownership and privacy leakage are tow important issues any LLM has to handle .We have learned many lessons from years of legal cases and government request of page take downs to search engines . Once the hype subsides the LLMs fed on public information will soon get into all of this mess .

And don’t even think what will happen if ChatGPT gives an answer that is blasphemous in some culture . This is my main reasoning as to why GPTs in chat mode wont harm Google’s search business .There is need for sanitizing ,curating and localizing the outcomes and none knows it better than google .Just that they need to offer same LLM toppings on their pizza too .

But as community we need to keep pushing the boundary on parameters .Efforts will also be made to plugin knowledge representation (universal or specific ) with LLMs for more deterministic answers .Size/cost optimization and Realtime model updates at this scale and geodistributed LLMs are few directions in which efforts can go

Premature Universal Knowledge claims by LLMs PRs

Its not the AI scientist but the PR machines that are claiming that we are very close to general intelligence .So far computing is concerned LLMs have given a feel that they are generally intelligent .We must remember that Googles LamDA was the first LLM that was said to be sentient (funny how google lost the PR battle ). So on the basis of “feels like human” the LLMs have started giving a feel that it is human level or intelligent or both . Moreover given a focused effort a “self” neural module can be built into LLMs .Say an LLM that can sense that its cloud billing is crossing the daily threshold and its starts feeling tired now .

This is funny example but its tells you the inherent problem with sentience of machines .Without change and limitations that living being experience , machines can achieve plant level equality to being alive .For animal level behavior they need to have ability to grasp animal concepts staring from reptilian to mammal and then human Brain .And also the concept of emotions that affect their whole existence (as opposed to giving a feel of an emotion).

So far the end user experience is concerned LLMs in current form do “feels like human !”

The second challenge is do LLMs have universal knowledge .Any one working on web search or elementary ML knows the answer is NO. Current LLMs are limited by the thin slice of information it was fed .So in reality this is more of a media claim than anything an AI scientist believes .

Societal Impact of post LLM era of AI

How has TV or mobile or internet affected humans/Students/Kids ?

The cognitive-behavioral impact that above waves of revolutions had on humans will be further multiplied by the capability expansion brought by AI (Apart from LLMs , image search was one such capability expansion but it was under hyped). So this issue and the debate and the remedies that follow are known to us .

However the issues of cultural, individual and situation sensitivity is something that the centralized models are not geared up to handled . Nor are the efforts behind them are aiming to .So good number of “situations” where “feels like human” AI did not really “work like human” will come up in coming decade .

New AI frontier

LLMs have not expanded the frontier of AI as field .However they are first class coming of age story for the community .As next level evolution AI can now evolve into two directions .

Personal Models

Current efforts in AI designs come from corporate style centralized AI desings .If there is any effort where a personal model can exist it will be more revolutionary than LLMs . A sort of “AI thing ” that stays with individual and monitors and learns and advices him/her .Imagine your fitness tracker which can suck data from your online activity and also listen to your speech and brain MRI .The corporate business case for this is lacking but the challenges pursuit of such “AI thing” can have on the AI community is huge .

Architecture for Sentient AI in 2026?

Leaving aside the debate of whether we really need it ,once the LLMs are seen as normal a concerted effort of AI labs can work on developing new neural architecture ,that learns from evolution on sentience in living organisms .Whether we will succeed or not ,AI community deserves to pursue its own “voodoo doll” moment like all branches of science .In fact if present AI labs gets enough money they might work on it sooner than 2026 .It is one of those effort worth failing .

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.